Internal
problem
ID
[21408]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
11.
Laplace
transform.
Excercise
11.7
at
page
248
Problem
number
:
40
Date
solved
:
Thursday, October 02, 2025 at 07:30:53 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = x(t)+y(t), diff(y(t),t) = -y(t)+Dirac(t)]; ic:=[x(0) = 0, y(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==x[t]+y[t],D[y[t],t]==-y[t]+DiracDelta[t]}; ic={x[0] ==0,y[0]==0}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode=[Eq(-x(t) - y(t) + Derivative(x(t), t),0),Eq(-Dirac(t) + y(t) + Derivative(y(t), t),0)] ics = {x(0): 0, y(0): 0} dsolve(ode,func=x(t),ics=ics)
ValueError : Input to the funcs should be a list of functions.