Internal
problem
ID
[21412]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
12.
Stability
theory.
Excercise
12.6
at
page
270
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 07:30:56 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -2*a*x(t)-y(t), diff(y(t),t) = (a^2+9)*x(t)]; dsolve(ode);
ode={D[x[t],t]==-2*a*x[t]-y[t],D[y[t],t]==(9+a^2)*x[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") x = Function("x") ode=[Eq(2*a*x(t) + y(t) + Derivative(x(t), t),0),Eq((-a**2 - 9)*x(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=x(t),ics=ics)
ValueError : Input to the funcs should be a list of functions.