81.1.35 problem 2-33

Internal problem ID [21480]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 2. Separable differential equations
Problem number : 2-33
Date solved : Thursday, October 02, 2025 at 07:40:03 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=\frac {x +y}{x} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 10
ode:=diff(y(x),x) = (x+y(x))/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\ln \left (x \right )+c_1 \right ) x \]
Mathematica. Time used: 0.015 (sec). Leaf size: 12
ode=D[y[x],x]==(y[x]+x)/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x (\log (x)+c_1) \end{align*}
Sympy. Time used: 0.081 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x + y(x))/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} + \log {\left (x \right )}\right ) \]