Internal
problem
ID
[997]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.3,
The
eigenvalue
method
for
linear
systems.
Page
395
Problem
number
:
problem
44
Date
solved
:
Tuesday, September 30, 2025 at 04:20:25 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 147*x__1(t)+23*x__2(t)-202*x__3(t), diff(x__2(t),t) = -90*x__1(t)-9*x__2(t)+129*x__3(t), diff(x__3(t),t) = 90*x__1(t)+15*x__2(t)-123*x__3(t)]; dsolve(ode);
ode={D[ x1[t],t]==147*x1[t]+23*x2[t]-202*x3[t],D[ x2[t],t]==-90*x1[t]-9*x2[t]+129*x3[t],D[ x3[t],t]==90*x1[t]+15*x2[t]-123*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-147*x__1(t) - 23*x__2(t) + 202*x__3(t) + Derivative(x__1(t), t),0),Eq(90*x__1(t) + 9*x__2(t) - 129*x__3(t) + Derivative(x__2(t), t),0),Eq(-90*x__1(t) - 15*x__2(t) + 123*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)