Internal
problem
ID
[21503]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
4.
Homogeneous
differential
equations.
Problem
number
:
4-9
Date
solved
:
Thursday, October 02, 2025 at 07:42:31 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=diff(y(x),x) = (2*y(x)^4+x^4)/x/y(x)^3; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] ==(2*y[x]^4+x^4)/(x*y[x]^3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**4 + 2*y(x)**4)/(x*y(x)**3),0) ics = {} dsolve(ode,func=y(x),ics=ics)