81.3.12 problem 4-17

Internal problem ID [21511]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 4. Homogeneous differential equations.
Problem number : 4-17
Date solved : Thursday, October 02, 2025 at 07:46:16 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x y^{\prime }-y&=\sqrt {x^{2}+y^{2}} \end{align*}
Maple. Time used: 0.016 (sec). Leaf size: 26
ode:=x*diff(y(x),x)-y(x) = (x^2+y(x)^2)^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {-c_1 \,x^{2}+\sqrt {x^{2}+y^{2}}+y}{x^{2}} = 0 \]
Mathematica. Time used: 0.189 (sec). Leaf size: 13
ode=x*D[y[x],x]-y[x]==Sqrt[x^2+y[x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \sinh (\log (x)+c_1) \end{align*}
Sympy. Time used: 0.735 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - sqrt(x**2 + y(x)**2) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x \sinh {\left (C_{1} - \log {\left (x \right )} \right )} \]