Internal
problem
ID
[21513]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
4.
Homogeneous
differential
equations.
Problem
number
:
4-19
Date
solved
:
Thursday, October 02, 2025 at 07:46:24 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
With initial conditions
ode:=y(x)+(x^2+y(x)^2)^(1/2)-x*diff(y(x),x) = 0; ic:=[y(1) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(y[x]+Sqrt[x^2+y[x]^2])-x*D[y[x],x]==0; ic={y[1]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) + sqrt(x**2 + y(x)**2) + y(x),0) ics = {y(1): 0} dsolve(ode,func=y(x),ics=ics)