81.4.21 problem 5-22

Internal problem ID [21535]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 5. Integrating factors. Page 72.
Problem number : 5-22
Date solved : Thursday, October 02, 2025 at 07:47:02 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} 4 y x +3 y^{2}-x +x \left (x +2 y\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 59
ode:=4*x*y(x)+3*y(x)^2-x+x*(2*y(x)+x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-x^{3}+\sqrt {x \left (x^{5}+x^{4}-4 c_1 \right )}}{2 x^{2}} \\ y &= \frac {-x^{3}-\sqrt {x \left (x^{5}+x^{4}-4 c_1 \right )}}{2 x^{2}} \\ \end{align*}
Mathematica. Time used: 0.43 (sec). Leaf size: 80
ode=(4*x*y[x]+3*y[x]^2-x)+x*(x+2*y[x])*D[y[x],x] ==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {x^4+\sqrt {x^2} \sqrt {x^6+x^5+4 c_1 x}}{2 x^3}\\ y(x)&\to -\frac {x}{2}+\frac {\sqrt {x^2} \sqrt {x^6+x^5+4 c_1 x}}{2 x^3} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x + 2*y(x))*Derivative(y(x), x) + 4*x*y(x) - x + 3*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out