Internal
problem
ID
[21588]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
9.
Clairaut
Equation.
Page
133.
Problem
number
:
9-5
Date
solved
:
Friday, October 03, 2025 at 07:58:58 AM
CAS
classification
:
[_quadrature]
ode:=2*diff(y(x),x)+y(x)-2*diff(y(x),x)*ln(diff(y(x),x)) = 0; dsolve(ode,y(x), singsol=all);
ode=2*D[y[x],x]+y[x]-2*D[y[x],x]*Log[D[y[x],x]]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - 2*log(Derivative(y(x), x))*Derivative(y(x), x) + 2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)