Internal
problem
ID
[21614]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
14.
Second
order
homogeneous
differential
equations
with
constant
coefficients.
Page
297.
Problem
number
:
14-19
Date
solved
:
Thursday, October 02, 2025 at 07:59:03 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)-6*diff(y(x),x)+25*y(x) = 0; ic:=[y(0) = -3, D(y)(0) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-6*D[y[x],x]+25*y[x]==0; ic={y[0]==-3,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(25*y(x) - 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): -3, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics)