Internal
problem
ID
[21674]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
16.
Variation
of
Parameters.
Page
375.
Problem
number
:
16-22
Date
solved
:
Thursday, October 02, 2025 at 07:59:46 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)-4*x^2*diff(diff(y(x),x),x)+8*x*diff(y(x),x)-8*y(x) = 4*ln(x); dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-4*x^2*D[y[x],{x,2}]+8*x*D[y[x],x]-8*y[x]==4*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - 4*x**2*Derivative(y(x), (x, 2)) + 8*x*Derivative(y(x), x) - 8*y(x) - 4*log(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)