81.13.1 problem 17-1

Internal problem ID [21675]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 17. Reduction of Order. Page 420
Problem number : 17-1
Date solved : Thursday, October 02, 2025 at 07:59:46 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} -y^{\prime }+x y^{\prime \prime }&=3 x^{2} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=x*diff(diff(y(x),x),x)-diff(y(x),x) = 3*x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{3}+\frac {1}{2} c_1 \,x^{2}+c_2 \]
Mathematica. Time used: 0.019 (sec). Leaf size: 20
ode=x*D[y[x],{x,2}]-D[y[x],x]==3*x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^3+\frac {c_1 x^2}{2}+c_2 \end{align*}
Sympy. Time used: 0.169 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x**2 + x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x^{2} + x^{3} \]