Internal
problem
ID
[21685]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
17.
Reduction
of
Order.
Page
420
Problem
number
:
17-11
Date
solved
:
Friday, October 03, 2025 at 07:59:00 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
Using reduction of order method given that one solution is
ode:=diff(diff(y(x),x),x)-2*s*diff(y(x),x)-2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*s*D[y[x],x]-2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") s = symbols("s") y = Function("y") ode = Eq(-2*s*Derivative(y(x), x) - 2*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)