81.14.11 problem 18-22

Internal problem ID [21696]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 18. Algebra of differential operators. Page 435
Problem number : 18-22
Date solved : Thursday, October 02, 2025 at 08:00:05 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{2 x} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)+y(x) = exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 +\frac {{\mathrm e}^{2 x}}{5} \]
Mathematica. Time used: 0.029 (sec). Leaf size: 25
ode=D[y[x],{x,2}]+y[x]==Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{2 x}}{5}+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.037 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - exp(2*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} + \frac {e^{2 x}}{5} \]