Internal
problem
ID
[21716]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
19.
Change
of
variables.
Page
483
Problem
number
:
19-9
Date
solved
:
Thursday, October 02, 2025 at 08:01:08 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x-1)^2*diff(diff(y(x),x),x)-4*(x-1)*diff(y(x),x)-14*y(x) = x^3-3*x^2+3*x-8; dsolve(ode,y(x), singsol=all);
ode=(x-1)^2*D[y[x],{x,2}]-4*(x-1)*D[y[x],x]-14*y[x] ==x^3-3*x^2+3*x-8; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + 3*x**2 - 3*x + (x - 1)**2*Derivative(y(x), (x, 2)) - (4*x - 4)*Derivative(y(x), x) - 14*y(x) + 8,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3 + x**2*Derivative(y(x), (x, 2)) + 3*x**2 - 2*x*Derivative(y(x), (x, 2)) - 3*x - 14*y(x) + Derivative(y(x), (x, 2)) + 8)/(4*(x - 1)) cannot be solved by the factorable group method