81.15.15 problem 19-16

Internal problem ID [21723]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 19. Change of variables. Page 483
Problem number : 19-16
Date solved : Thursday, October 02, 2025 at 08:01:20 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} y^{\prime }&=\sin \left (x +y\right ) \end{align*}
Maple. Time used: 0.065 (sec). Leaf size: 25
ode:=diff(y(x),x) = sin(x+y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x -2 \arctan \left (\frac {c_1 -x -2}{-x +c_1}\right ) \]
Mathematica. Time used: 53.92 (sec). Leaf size: 541
ode=D[y[x],x]==Sin[x+y[x]] ; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -2 \arccos \left (\frac {(x+c_1) \sin \left (\frac {x}{2}\right )-(x-2+c_1) \cos \left (\frac {x}{2}\right )}{\sqrt {2} \sqrt {x^2+2 (-1+c_1) x+2+c_1{}^2-2 c_1}}\right )\\ y(x)&\to 2 \arccos \left (\frac {(x+c_1) \sin \left (\frac {x}{2}\right )-(x-2+c_1) \cos \left (\frac {x}{2}\right )}{\sqrt {2} \sqrt {x^2+2 (-1+c_1) x+2+c_1{}^2-2 c_1}}\right )\\ y(x)&\to -2 \arccos \left (\frac {(x-2+c_1) \cos \left (\frac {x}{2}\right )-(x+c_1) \sin \left (\frac {x}{2}\right )}{\sqrt {2} \sqrt {x^2+2 (-1+c_1) x+2+c_1{}^2-2 c_1}}\right )\\ y(x)&\to 2 \arccos \left (\frac {(x-2+c_1) \cos \left (\frac {x}{2}\right )-(x+c_1) \sin \left (\frac {x}{2}\right )}{\sqrt {2} \sqrt {x^2+2 (-1+c_1) x+2+c_1{}^2-2 c_1}}\right )\\ y(x)&\to -2 \arccos \left (\frac {\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )}{\sqrt {2}}\right )\\ y(x)&\to 2 \arccos \left (\frac {\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )}{\sqrt {2}}\right )\\ y(x)&\to -2 \arccos \left (\frac {\sin \left (\frac {x}{2}\right )-\cos \left (\frac {x}{2}\right )}{\sqrt {2}}\right )\\ y(x)&\to 2 \arccos \left (\frac {\sin \left (\frac {x}{2}\right )-\cos \left (\frac {x}{2}\right )}{\sqrt {2}}\right )\\ y(x)&\to -2 \arccos \left (\frac {(x-2) \cos \left (\frac {x}{2}\right )-x \sin \left (\frac {x}{2}\right )}{\sqrt {2} \sqrt {x^2-2 x+2}}\right )\\ y(x)&\to 2 \arccos \left (\frac {(x-2) \cos \left (\frac {x}{2}\right )-x \sin \left (\frac {x}{2}\right )}{\sqrt {2} \sqrt {x^2-2 x+2}}\right )\\ y(x)&\to -2 \arccos \left (\frac {x \sin \left (\frac {x}{2}\right )-(x-2) \cos \left (\frac {x}{2}\right )}{\sqrt {2} \sqrt {x^2-2 x+2}}\right )\\ y(x)&\to 2 \arccos \left (\frac {x \sin \left (\frac {x}{2}\right )-(x-2) \cos \left (\frac {x}{2}\right )}{\sqrt {2} \sqrt {x^2-2 x+2}}\right ) \end{align*}
Sympy. Time used: 1.093 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sin(x + y(x)) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x - 2 \operatorname {atan}{\left (\frac {C_{1} + x + 2}{C_{1} + x} \right )} \]