Internal
problem
ID
[21725]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
19.
Change
of
variables.
Page
483
Problem
number
:
19-18
Date
solved
:
Thursday, October 02, 2025 at 08:01:25 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(1-1/x)*diff(diff(u(x),x),x)+(2/x-2/x^2-1/x^3)*diff(u(x),x)-1/x^4*u(x) = 2/x-2/x^2-2/x^3; dsolve(ode,u(x), singsol=all);
ode=(1-1/x)*D[u[x],{x,2}]+(2/x-2/x^2-1/x^3)*D[u[x],x]-1/x^4*u[x] == 2/x-2/x^2-2/x^3; ic={}; DSolve[{ode,ic},u[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") u = Function("u") ode = Eq((1 - 1/x)*Derivative(u(x), (x, 2)) + (2/x - 2/x**2 - 1/x**3)*Derivative(u(x), x) - 2/x + 2/x**2 + 2/x**3 - u(x)/x**4,0) ics = {} dsolve(ode,func=u(x),ics=ics)
NotImplementedError : The given ODE Derivative(u(x), x) - (x**4*Derivative(u(x), (x, 2)) - x**3*Derivative(u(x), (x, 2)) - 2*x**3 + 2*x**2 + 2*x - u(x))/(x*(-2*x**2 + 2*x + 1)) cannot be solved by the factorable group method