81.15.19 problem 19-20

Internal problem ID [21727]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 19. Change of variables. Page 483
Problem number : 19-20
Date solved : Thursday, October 02, 2025 at 08:01:27 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=x*diff(diff(y(x),x),x)+(x+3)*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (x +1\right ) {\mathrm e}^{-x} c_1 +c_2}{x^{2}} \]
Mathematica. Time used: 0.021 (sec). Leaf size: 24
ode=x*D[y[x],{x,2}]+(x+3)*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1-c_2 e^{-x} (x+1)}{x^2} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (x + 3)*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False