Internal
problem
ID
[21730]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
I.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
20.
Adjoint
of
a
differential
equation.
Page
506
Problem
number
:
20-1
Date
solved
:
Thursday, October 02, 2025 at 08:01:29 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=(x^2-x)*diff(diff(y(x),x),x)+(2*x^2+4*x-3)*diff(y(x),x)+8*x*y(x) = 1; dsolve(ode,y(x), singsol=all);
ode=(x^2-x)*D[y[x],{x,2}]+(2*x^2+4*x-3)*D[y[x],x]+8*x*y[x]==1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(8*x*y(x) + (x**2 - x)*Derivative(y(x), (x, 2)) + (2*x**2 + 4*x - 3)*Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**2*Derivative(y(x), (x, 2)) - 8*x*y(x) + x*Derivative(y(x), (x, 2)) + 1)/(2*x**2 + 4*x - 3) cannot be solved by the factorable group method