81.18.1 problem 22-1

Internal problem ID [21740]
Book : The Differential Equations Problem Solver. VOL. I. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 22. Electrical Circuits
Problem number : 22-1
Date solved : Thursday, October 02, 2025 at 08:01:39 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+4 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(diff(y(t),t),t)+4*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_1 \sin \left (2 t \right )+c_2 \cos \left (2 t \right ) \]
Mathematica. Time used: 0.008 (sec). Leaf size: 20
ode=D[y[t],{t,2}]+4*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to c_1 \cos (2 t)+c_2 \sin (2 t) \end{align*}
Sympy. Time used: 0.028 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(4*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} \sin {\left (2 t \right )} + C_{2} \cos {\left (2 t \right )} \]