Internal
problem
ID
[21745]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
23.
Power
series.
Page
695
Problem
number
:
23-8
Date
solved
:
Thursday, October 02, 2025 at 08:01:43 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=2*x^2*diff(diff(y(x),x),x)+7*x*(1+x)*diff(y(x),x)-3*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=2*x^2*D[y[x],{x,2}]+7*x*(x+1)*D[y[x],x]-3*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + 7*x*(x + 1)*Derivative(y(x), x) - 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)