Internal
problem
ID
[21777]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
24.
Power
series
about
an
ordinary
point.
Page
719
Problem
number
:
24-15
Date
solved
:
Thursday, October 02, 2025 at 08:02:02 PM
CAS
classification
:
[_Gegenbauer]
Using series method with expansion around
Order:=6; ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+lambda*(lambda+1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+ \[Lambda]*( \[Lambda]+1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(lambda_*(lambda_ + 1)*y(x) - 2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)