Internal
problem
ID
[21782]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
24.
Power
series
about
an
ordinary
point.
Page
719
Problem
number
:
24-22
Date
solved
:
Thursday, October 02, 2025 at 08:02:06 PM
CAS
classification
:
[NONE]
Using series method with expansion around
With initial conditions
Order:=6; ode:=diff(diff(y(x),x),x) = y(x)^2*exp(x)-diff(y(x),x)^2; ic:=[y(0) = 0, D(y)(0) = 1]; dsolve([ode,op(ic)],y(x),type='series',x=0);
ode=D[y[x],{x,2}]==Exp[x]*y[x]^2-D[y[x],x]^2; ic={y[0]==0,Derivative[1][y][0] ==1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x)**2*exp(x) + Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE -y(x)**2*exp(x) + Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) does not match hint 2nd_power_series_regular