Internal
problem
ID
[21785]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
25.
Power
series
about
a
singular
point.
Page
762
Problem
number
:
25-2
Date
solved
:
Thursday, October 02, 2025 at 08:02:09 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^4*(x^2+1)*(x-1)^2*diff(diff(y(x),x),x)+4*x^3*(x-1)*diff(y(x),x)+(1+x)*y(x) = 0; dsolve(ode,y(x),type='series',x=1);
ode=x^4*(x^2+1)*(x-1)^2*D[y[x],{x,2}]+4*x^3*(x-1)*D[y[x],x]+(x+1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,5}]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*(x - 1)**2*(x**2 + 1)*Derivative(y(x), (x, 2)) + 4*x**3*(x - 1)*Derivative(y(x), x) + (x + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=1,n=6)
ValueError : Expected Expr or iterable but got None