Internal
problem
ID
[21817]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
25.
Power
series
about
a
singular
point.
Page
762
Problem
number
:
25-34
Date
solved
:
Thursday, October 02, 2025 at 08:02:33 PM
CAS
classification
:
[[_high_order, _exact, _linear, _nonhomogeneous]]
Using series method with expansion around
Order:=6; ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+4*x^3*diff(diff(diff(y(x),x),x),x)+x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = -ln(x); dsolve(ode,y(x),type='series',x=0);
ode=x^4*D[y[x],{x,4}]+4*x^3*D[y[x],{x,3}]+x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==-Log[x]; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
Series solution not supported for ode of order > 2