Internal
problem
ID
[21836]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
28.
Laplace
transforms.
Page
850
Problem
number
:
28-18
Date
solved
:
Thursday, October 02, 2025 at 08:02:42 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+5*y(t) = piecewise(0 <= t and t < Pi,1,Pi <= t,0); ic:=[y(0) = 0, D(y)(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+2*D[y[t],t]+5*y[t]==Piecewise[{{1,0<=t<Pi},{0,t>=Pi}}]; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((1, (t >= 0) & (t < pi)), (0, t >= pi)) + 5*y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)