Internal
problem
ID
[21854]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
33.
Systems
of
ordinary
differential
equations.
Page
1059
Problem
number
:
33-40
Date
solved
:
Thursday, October 02, 2025 at 08:02:56 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 2*x(t)+2*y(t)-z(t), diff(y(t),t) = y(t)+z(t), diff(z(t),t) = -y(t)+z(t)]; dsolve(ode);
ode={D[x[t],t]==2*x[t]+2*y[t]-z[t],D[y[t],t]==y[t]+z[t],D[z[t],t]==-y[t]+z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-2*x(t) - 2*y(t) + z(t) + Derivative(x(t), t),0),Eq(-y(t) - z(t) + Derivative(y(t), t),0),Eq(y(t) - z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)