82.8.14 problem 36-15

Internal problem ID [21885]
Book : The Differential Equations Problem Solver. VOL. II. M. Fogiel director. REA, NY. 1978. ISBN 78-63609
Section : Chapter 36. Nonlinear differential equations. Page 1203
Problem number : 36-15
Date solved : Thursday, October 02, 2025 at 08:05:43 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y {y^{\prime }}^{2}-2 x y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.244 (sec). Leaf size: 71
ode:=y(x)*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -x \\ y &= x \\ y &= 0 \\ y &= \sqrt {c_1 \left (-2 i x +c_1 \right )} \\ y &= \sqrt {c_1 \left (2 i x +c_1 \right )} \\ y &= -\sqrt {c_1 \left (-2 i x +c_1 \right )} \\ y &= -\sqrt {c_1 \left (2 i x +c_1 \right )} \\ \end{align*}
Mathematica. Time used: 0.765 (sec). Leaf size: 64
ode=y[x]*D[y[x],x]^2-2*D[y[x],x]*x+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt {-e^{c_1} \left (-2 x+e^{c_1}\right )}\\ y(x)&\to \sqrt {-e^{c_1} \left (-2 x+e^{c_1}\right )}\\ y(x)&\to 0\\ y(x)&\to -x\\ y(x)&\to x \end{align*}
Sympy. Time used: 141.425 (sec). Leaf size: 469
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + y(x)*Derivative(y(x), x)**2 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x + C_{1}}}{2}\right ] \]