83.2.1 problem 1 (a)

Internal problem ID [21912]
Book : Differential Equations By Kaj L. Nielsen. Second edition 1966. Barnes and nobel. 66-28306
Section : Chapter III. First order differential equations of the first degree. Ex. III at page 35
Problem number : 1 (a)
Date solved : Thursday, October 02, 2025 at 08:09:20 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {x}{y} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=diff(y(x),x) = x/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {x^{2}+c_1} \\ y &= -\sqrt {x^{2}+c_1} \\ \end{align*}
Mathematica. Time used: 0.05 (sec). Leaf size: 35
ode=D[y[x],x]==x/y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt {x^2+2 c_1}\\ y(x)&\to \sqrt {x^2+2 c_1} \end{align*}
Sympy. Time used: 0.130 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x/y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} + x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} + x^{2}}\right ] \]