Internal
problem
ID
[21926]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
III.
First
order
differential
equations
of
the
first
degree.
Ex.
IV
at
page
38
Problem
number
:
2
(b)
Date
solved
:
Thursday, October 02, 2025 at 08:13:08 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
With initial conditions
ode:=x^2+2*x*y(x)-2*y(x)^2+(y(x)^2+2*x*y(x)-2*x^2)*diff(y(x),x) = 0; ic:=[y(0) = 3]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x^2+2*x*y[x]-2*y[x]^2)+(y[x]^2+2*x*y[x]-2*x^2)*D[y[x],x]==0; ic={y[0]==3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + 2*x*y(x) + (-2*x**2 + 2*x*y(x) + y(x)**2)*Derivative(y(x), x) - 2*y(x)**2,0) ics = {y(0): 3} dsolve(ode,func=y(x),ics=ics)