Internal
problem
ID
[21934]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
III.
First
order
differential
equations
of
the
first
degree.
Ex.
V
at
page
42
Problem
number
:
2
(b)
Date
solved
:
Thursday, October 02, 2025 at 08:15:48 PM
CAS
classification
:
[_exact]
With initial conditions
ode:=2*x*sin(y(x))+2*x+3*y(x)*cos(x)+(x^2*cos(y(x))+3*sin(x))*diff(y(x),x) = 0; ic:=[y(1/2*Pi) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(2*x*Sin[y[x]]+2*x+3*y[x]*Cos[x] )+(x^2*Cos[y[x]]+3*Sin[x] )*D[y[x],x]==0; ic={y[Pi/2]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*sin(y(x)) + 2*x + (x**2*cos(y(x)) + 3*sin(x))*Derivative(y(x), x) + 3*y(x)*cos(x),0) ics = {y(pi/2): 0} dsolve(ode,func=y(x),ics=ics)
Timed Out