83.5.4 problem 1 (d)
Internal
problem
ID
[21939]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
III.
First
order
differential
equations
of
the
first
degree.
Ex.
VI
at
page
47
Problem
number
:
1
(d)
Date
solved
:
Thursday, October 02, 2025 at 08:17:59 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} 3 y+2 x y^{\prime }+4 x y^{2}+3 x^{2} y y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 0.006 (sec). Leaf size: 375
ode:=3*y(x)+2*x*diff(y(x),x)+4*x*y(x)^2+3*x^2*y(x)*diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= \frac {2 x^{2} 2^{{1}/{3}}-2 x {\left (\left (3 \sqrt {3}\, \sqrt {27 c_1^{2}-4 c_1 x}+27 c_1 -2 x \right ) x^{2}\right )}^{{1}/{3}}+2^{{2}/{3}} {\left (\left (3 \sqrt {3}\, \sqrt {27 c_1^{2}-4 c_1 x}+27 c_1 -2 x \right ) x^{2}\right )}^{{2}/{3}}}{6 x^{2} {\left (\left (3 \sqrt {3}\, \sqrt {27 c_1^{2}-4 c_1 x}+27 c_1 -2 x \right ) x^{2}\right )}^{{1}/{3}}} \\
y &= \frac {-\frac {2^{{2}/{3}} \left (1+i \sqrt {3}\right ) {\left (\left (3 \sqrt {3}\, \sqrt {27 c_1^{2}-4 c_1 x}+27 c_1 -2 x \right ) x^{2}\right )}^{{2}/{3}}}{2}+x \left (-2 {\left (\left (3 \sqrt {3}\, \sqrt {27 c_1^{2}-4 c_1 x}+27 c_1 -2 x \right ) x^{2}\right )}^{{1}/{3}}+x 2^{{1}/{3}} \left (i \sqrt {3}-1\right )\right )}{6 {\left (\left (3 \sqrt {3}\, \sqrt {27 c_1^{2}-4 c_1 x}+27 c_1 -2 x \right ) x^{2}\right )}^{{1}/{3}} x^{2}} \\
y &= -\frac {-\frac {2^{{2}/{3}} \left (i \sqrt {3}-1\right ) {\left (\left (3 \sqrt {3}\, \sqrt {27 c_1^{2}-4 c_1 x}+27 c_1 -2 x \right ) x^{2}\right )}^{{2}/{3}}}{2}+x \left (2 {\left (\left (3 \sqrt {3}\, \sqrt {27 c_1^{2}-4 c_1 x}+27 c_1 -2 x \right ) x^{2}\right )}^{{1}/{3}}+x 2^{{1}/{3}} \left (1+i \sqrt {3}\right )\right )}{6 {\left (\left (3 \sqrt {3}\, \sqrt {27 c_1^{2}-4 c_1 x}+27 c_1 -2 x \right ) x^{2}\right )}^{{1}/{3}} x^{2}} \\
\end{align*}
✓ Mathematica. Time used: 65.83 (sec). Leaf size: 401
ode=3*y[x]+2*x*D[y[x],x]+4*x*y[x]^2+3*x^2*y[x]*D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {1}{6} \left (2^{2/3} \sqrt [3]{\frac {-2 x+3 \sqrt {3} \sqrt {e^{c_1} \left (-4 x+27 e^{c_1}\right )}+27 e^{c_1}}{x^4}}+\frac {2 \sqrt [3]{2}}{x^2 \sqrt [3]{\frac {-2 x+3 \sqrt {3} \sqrt {e^{c_1} \left (-4 x+27 e^{c_1}\right )}+27 e^{c_1}}{x^4}}}-\frac {2}{x}\right )\\ y(x)&\to \frac {1}{12} \left (i 2^{2/3} \left (\sqrt {3}+i\right ) \sqrt [3]{\frac {-2 x+3 \sqrt {3} \sqrt {e^{c_1} \left (-4 x+27 e^{c_1}\right )}+27 e^{c_1}}{x^4}}-\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right )}{x^2 \sqrt [3]{\frac {-2 x+3 \sqrt {3} \sqrt {e^{c_1} \left (-4 x+27 e^{c_1}\right )}+27 e^{c_1}}{x^4}}}-\frac {4}{x}\right )\\ y(x)&\to \frac {1}{12} \left (-2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{\frac {-2 x+3 \sqrt {3} \sqrt {e^{c_1} \left (-4 x+27 e^{c_1}\right )}+27 e^{c_1}}{x^4}}+\frac {2 i \sqrt [3]{2} \left (\sqrt {3}+i\right )}{x^2 \sqrt [3]{\frac {-2 x+3 \sqrt {3} \sqrt {e^{c_1} \left (-4 x+27 e^{c_1}\right )}+27 e^{c_1}}{x^4}}}-\frac {4}{x}\right ) \end{align*}
✓ Sympy. Time used: 31.153 (sec). Leaf size: 410
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(3*x**2*y(x)*Derivative(y(x), x) + 4*x*y(x)**2 + 2*x*Derivative(y(x), x) + 3*y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = - \frac {2^{\frac {2}{3}} \sqrt [3]{- \frac {27 C_{1}}{x^{4}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (\frac {27 C_{1}}{x} - 4\right )}{x^{7}}} + \frac {2}{x^{3}}}}{6} - \frac {1}{3 x} - \frac {\sqrt [3]{2}}{3 x^{2} \sqrt [3]{- \frac {27 C_{1}}{x^{4}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (\frac {27 C_{1}}{x} - 4\right )}{x^{7}}} + \frac {2}{x^{3}}}}, \ y{\left (x \right )} = \frac {\sqrt [3]{- \frac {27 C_{1}}{2 x^{4}} + \frac {3 \sqrt {3} \sqrt {\frac {C_{1} \left (\frac {27 C_{1}}{x} - 4\right )}{x^{7}}}}{2} + \frac {1}{x^{3}}}}{6} - \frac {\sqrt {3} i \sqrt [3]{- \frac {27 C_{1}}{2 x^{4}} + \frac {3 \sqrt {3} \sqrt {\frac {C_{1} \left (\frac {27 C_{1}}{x} - 4\right )}{x^{7}}}}{2} + \frac {1}{x^{3}}}}{6} - \frac {1}{3 x} + \frac {2}{3 x^{2} \left (1 - \sqrt {3} i\right ) \sqrt [3]{- \frac {27 C_{1}}{2 x^{4}} + \frac {3 \sqrt {3} \sqrt {\frac {C_{1} \left (\frac {27 C_{1}}{x} - 4\right )}{x^{7}}}}{2} + \frac {1}{x^{3}}}}, \ y{\left (x \right )} = \frac {\sqrt [3]{- \frac {27 C_{1}}{2 x^{4}} + \frac {3 \sqrt {3} \sqrt {\frac {C_{1} \left (\frac {27 C_{1}}{x} - 4\right )}{x^{7}}}}{2} + \frac {1}{x^{3}}}}{6} + \frac {\sqrt {3} i \sqrt [3]{- \frac {27 C_{1}}{2 x^{4}} + \frac {3 \sqrt {3} \sqrt {\frac {C_{1} \left (\frac {27 C_{1}}{x} - 4\right )}{x^{7}}}}{2} + \frac {1}{x^{3}}}}{6} - \frac {1}{3 x} + \frac {2}{3 x^{2} \left (1 + \sqrt {3} i\right ) \sqrt [3]{- \frac {27 C_{1}}{2 x^{4}} + \frac {3 \sqrt {3} \sqrt {\frac {C_{1} \left (\frac {27 C_{1}}{x} - 4\right )}{x^{7}}}}{2} + \frac {1}{x^{3}}}}\right ]
\]