83.7.2 problem 2

Internal problem ID [21950]
Book : Differential Equations By Kaj L. Nielsen. Second edition 1966. Barnes and nobel. 66-28306
Section : Chapter III. First order differential equations of the first degree. Ex. VIII at page 53
Problem number : 2
Date solved : Thursday, October 02, 2025 at 08:19:08 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} 2+3 x -5 y+7 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=2+3*x-5*y(x)+7*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3 x}{5}+\frac {31}{25}+{\mathrm e}^{\frac {5 x}{7}} c_1 \]
Mathematica. Time used: 0.053 (sec). Leaf size: 24
ode=(2+3*x-5*y[x])+7*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {3 x}{5}+c_1 e^{5 x/7}+\frac {31}{25} \end{align*}
Sympy. Time used: 0.089 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x - 5*y(x) + 7*Derivative(y(x), x) + 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{\frac {5 x}{7}} + \frac {3 x}{5} + \frac {31}{25} \]