Internal
problem
ID
[22016]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
X.
Solution
in
power
series.
Ex.
XVIII
at
page
174
Problem
number
:
1
Date
solved
:
Friday, October 03, 2025 at 07:59:45 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=2*diff(diff(diff(y(x),x),x),x)+x*diff(diff(y(x),x),x)+2*diff(y(x),x)+x*y(x) = 0; ic:=[y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = -1]; dsolve([ode,op(ic)],y(x),type='series',x=0);
ode=2*D[y[x],{x,3}]+x*D[y[x],{x,2}]+2*D[y[x],x]+x*y[x]==0; ic={y[0]==1,Derivative[1][y][0] ==0,Derivative[2][y][0] ==-1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t) + y(t) - exp(t) - Derivative(x(t), (t, 2)) + Derivative(y(t), t),0),Eq(x(t) - Derivative(x(t), t) + Derivative(y(t), t) - exp(-t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Series solution not supported for ode of order > 2