Internal
problem
ID
[22018]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
X.
Solution
in
power
series.
Ex.
XVIII
at
page
174
Problem
number
:
2
(b)
Date
solved
:
Thursday, October 02, 2025 at 08:21:42 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(2*x^2+1)*diff(diff(y(x),x),x)+3*x*diff(y(x),x)-6*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(2*x^2+1)*D[y[x],{x,2}]+3*x*D[y[x],x]-6*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x*Derivative(y(x), x) + (2*x**2 + 1)*Derivative(y(x), (x, 2)) - 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)