Internal
problem
ID
[22020]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Chapter
X.
Solution
in
power
series.
Ex.
XVIII
at
page
174
Problem
number
:
2
(d)
Date
solved
:
Thursday, October 02, 2025 at 08:21:44 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*diff(diff(y(x),x),x)+(x^2-3*x)*diff(y(x),x)+(x+4)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^2)*D[y[x],{x,2}]+(x^2-3*x)*D[y[x],x]+(x+4)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + (x + 4)*y(x) + (x**2 - 3*x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)