Internal
problem
ID
[22057]
Book
:
Differential
Equations
By
Kaj
L.
Nielsen.
Second
edition
1966.
Barnes
and
nobel.
66-28306
Section
:
Examination
III.
page
256
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 08:23:16 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+3*diff(y(x),x)-y(x) = 1/x^3*exp(x); ic:=[y(1) = 0, D(y)(1) = 0, (D@@2)(y)(1) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+3*D[y[x],x]-y[x]==x^(-3)*Exp[x]; ic={y[1]==0,Derivative[1][y][1] ==0,Derivative[2][y][1] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x) + 3*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)) - exp(x)/x**3,0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 0, Subs(Derivative(y(x), (x, 2)), x, 1): 0} dsolve(ode,func=y(x),ics=ics)