84.3.6 problem 2.6

Internal problem ID [22083]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 2. Solutions. Solved problems page 5
Problem number : 2.6
Date solved : Thursday, October 02, 2025 at 08:23:40 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y+y^{\prime \prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 10
ode:=diff(diff(y(x),x),x)+4*y(x) = 0; 
ic:=[y(0) = 0, D(y)(0) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {\sin \left (2 x \right )}{2} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 10
ode=D[y[x],{x,2}]+4*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sin (x) \cos (x) \end{align*}
Sympy. Time used: 0.035 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {\sin {\left (2 x \right )}}{2} + \cos {\left (2 x \right )} \]