84.7.6 problem 4.7

Internal problem ID [22112]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 4. Separable first-order differential equations. Solved problems. Page 14
Problem number : 4.7
Date solved : Thursday, October 02, 2025 at 08:25:15 PM
CAS classification : [_separable]

\begin{align*} x \cos \left (x \right )+\left (1-6 y^{5}\right ) y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (\pi \right )&=0 \\ \end{align*}
Maple. Time used: 0.157 (sec). Leaf size: 22
ode:=x*cos(x)+(1-6*y(x)^5)*diff(y(x),x) = 0; 
ic:=[y(Pi) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (\textit {\_Z}^{6}-x \sin \left (x \right )-\cos \left (x \right )-\textit {\_Z} -1\right ) \]
Mathematica. Time used: 6.725 (sec). Leaf size: 27
ode=x*Cos[x]+(1-6*y[x]^5)*D[y[x],x]==0; 
ic={y[Pi]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {Root}\left [\text {$\#$1}^6-\text {$\#$1}-x \sin (x)-\cos (x)-1\&,1\right ] \end{align*}
Sympy. Time used: 0.135 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*cos(x) + (1 - 6*y(x)**5)*Derivative(y(x), x),0) 
ics = {y(pi): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ - x \sin {\left (x \right )} + y^{6}{\left (x \right )} - y{\left (x \right )} - \cos {\left (x \right )} = 1 \]