84.9.2 problem 5.2

Internal problem ID [22125]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 5. Homogeneous differential equations. Solved problems. Page 19
Problem number : 5.2
Date solved : Thursday, October 02, 2025 at 08:25:41 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} y^{\prime }&=\frac {2 y^{4}+x^{4}}{x y^{3}} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 62
ode:=diff(y(x),x) = (2*y(x)^4+x^4)/x/y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (c_1 \,x^{4}-1\right )^{{1}/{4}} x \\ y &= -\left (c_1 \,x^{4}-1\right )^{{1}/{4}} x \\ y &= -i \left (c_1 \,x^{4}-1\right )^{{1}/{4}} x \\ y &= i \left (c_1 \,x^{4}-1\right )^{{1}/{4}} x \\ \end{align*}
Mathematica. Time used: 0.543 (sec). Leaf size: 136
ode=D[y[x],x]==(2*y[x]^4+x^4)/(x*y[x]^3); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x \sqrt [4]{-1+c_1 x^4}\\ y(x)&\to -i x \sqrt [4]{-1+c_1 x^4}\\ y(x)&\to i x \sqrt [4]{-1+c_1 x^4}\\ y(x)&\to x \sqrt [4]{-1+c_1 x^4}\\ y(x)&\to -\frac {(1+i) x}{\sqrt {2}}\\ y(x)&\to -\frac {(1-i) x}{\sqrt {2}}\\ y(x)&\to \frac {(1-i) x}{\sqrt {2}}\\ y(x)&\to \frac {(1+i) x}{\sqrt {2}} \end{align*}
Sympy. Time used: 1.020 (sec). Leaf size: 68
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**4 + 2*y(x)**4)/(x*y(x)**3),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - i \sqrt [4]{x^{4} \left (C_{1} x^{4} - 1\right )}, \ y{\left (x \right )} = i \sqrt [4]{x^{4} \left (C_{1} x^{4} - 1\right )}, \ y{\left (x \right )} = - \sqrt [4]{x^{4} \left (C_{1} x^{4} - 1\right )}, \ y{\left (x \right )} = \sqrt [4]{x^{4} \left (C_{1} x^{4} - 1\right )}\right ] \]