84.14.10 problem 7.18

Internal problem ID [22167]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 7. Integrating factors. Supplementary problems
Problem number : 7.18
Date solved : Thursday, October 02, 2025 at 08:33:12 PM
CAS classification : [_separable]

\begin{align*} 2 x y^{2}+\frac {x}{y^{2}}+4 x^{2} y y^{\prime }&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 103
ode:=2*x*y(x)^2+x/y(x)^2+4*x^2*y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2^{{3}/{4}} {\left (-\left (x^{2}-2 c_1 \right ) x^{2}\right )}^{{1}/{4}}}{2 x} \\ y &= \frac {2^{{3}/{4}} {\left (-\left (x^{2}-2 c_1 \right ) x^{2}\right )}^{{1}/{4}}}{2 x} \\ y &= -\frac {i 2^{{3}/{4}} {\left (-\left (x^{2}-2 c_1 \right ) x^{2}\right )}^{{1}/{4}}}{2 x} \\ y &= \frac {i 2^{{3}/{4}} {\left (-\left (x^{2}-2 c_1 \right ) x^{2}\right )}^{{1}/{4}}}{2 x} \\ \end{align*}
Mathematica. Time used: 0.184 (sec). Leaf size: 284
ode=(2*x*y[x]^2+x/y[x]^2)+(4*x^2*y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sqrt [4]{-x^2+e^{8 c_1}}}{\sqrt [4]{2} \sqrt {x}}\\ y(x)&\to -\frac {i \sqrt [4]{-x^2+e^{8 c_1}}}{\sqrt [4]{2} \sqrt {x}}\\ y(x)&\to \frac {i \sqrt [4]{-x^2+e^{8 c_1}}}{\sqrt [4]{2} \sqrt {x}}\\ y(x)&\to \frac {\sqrt [4]{-x^2+e^{8 c_1}}}{\sqrt [4]{2} \sqrt {x}}\\ y(x)&\to -\sqrt [4]{-\frac {1}{2}}\\ y(x)&\to \sqrt [4]{-\frac {1}{2}}\\ y(x)&\to \frac {1-i}{2^{3/4}}\\ y(x)&\to -\frac {1-i}{2^{3/4}}\\ y(x)&\to \frac {i x^{3/2}}{\sqrt [4]{2} \left (-x^2\right )^{3/4}}\\ y(x)&\to \frac {x^{3/2}}{\sqrt [4]{2} \left (-x^2\right )^{3/4}}\\ y(x)&\to \frac {i \sqrt [4]{-x^2}}{\sqrt [4]{2} \sqrt {x}}\\ y(x)&\to \frac {\sqrt [4]{-x^2}}{\sqrt [4]{2} \sqrt {x}} \end{align*}
Sympy. Time used: 1.394 (sec). Leaf size: 71
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*y(x)*Derivative(y(x), x) + 2*x*y(x)**2 + x/y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\left (-2\right )^{\frac {3}{4}} \sqrt [4]{\frac {C_{1}}{x^{2}} + 1}}{2}, \ y{\left (x \right )} = \frac {\left (-2\right )^{\frac {3}{4}} \sqrt [4]{\frac {C_{1}}{x^{2}} + 1}}{2}, \ y{\left (x \right )} = - \sqrt [4]{\frac {C_{1}}{x^{2}} - \frac {1}{2}}, \ y{\left (x \right )} = \sqrt [4]{\frac {C_{1}}{x^{2}} - \frac {1}{2}}\right ] \]