84.28.2 problem 16.6

Internal problem ID [22279]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 16. Initial-value problems. Supplementary problems
Problem number : 16.6
Date solved : Thursday, October 02, 2025 at 08:37:01 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \\ y^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-2*y(x) = exp(3*x); 
ic:=[y(0) = 2, D(y)(0) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {2 \,{\mathrm e}^{2 x}}{3}+\frac {13 \,{\mathrm e}^{-x}}{12}+\frac {{\mathrm e}^{3 x}}{4} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 30
ode=D[y[x],{x,2}]-D[y[x],{x,1}]-2*y[x]==Exp[3*x]; 
ic={y[0]==2,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{12} e^{-x} \left (8 e^{3 x}+3 e^{4 x}+13\right ) \end{align*}
Sympy. Time used: 0.123 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*y(x) - exp(3*x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {e^{3 x}}{4} + \frac {2 e^{2 x}}{3} + \frac {13 e^{- x}}{12} \]