Internal
problem
ID
[22283]
Book
:
Schaums
outline
series.
Differential
Equations
By
Richard
Bronson.
1973.
McGraw-Hill
Inc.
ISBN
0-07-008009-7
Section
:
Chapter
16.
Initial-value
problems.
Supplementary
problems
Problem
number
:
16.10
Date
solved
:
Thursday, October 02, 2025 at 08:37:04 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+4*y(x) = sin(2*x)^2; ic:=[y(Pi) = 0, D(y)(Pi) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+4*y[x]==Sin[2*x]^2; ic={y[Pi]==0,Derivative[1][y][Pi] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) - sin(2*x)**2 + Derivative(y(x), (x, 2)),0) ics = {y(pi): 0, Subs(Derivative(y(x), x), x, pi): 0} dsolve(ode,func=y(x),ics=ics)