84.38.5 problem 26.17

Internal problem ID [22359]
Book : Schaums outline series. Differential Equations By Richard Bronson. 1973. McGraw-Hill Inc. ISBN 0-07-008009-7
Section : Chapter 26. Solutions of linear differential equations with constant coefficients by Laplace transform. Supplementary problems
Problem number : 26.17
Date solved : Thursday, October 02, 2025 at 08:37:55 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }+5 y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.026 (sec). Leaf size: 5
ode:=diff(y(t),t)+5*y(t) = 0; 
ic:=[y(1) = 0]; 
dsolve([ode,op(ic)],y(t),method='laplace');
 
\[ y = 0 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 6
ode=D[y[t],t]+5*y[t]==0; 
ic={y[1]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to 0 \end{align*}
Sympy. Time used: 0.058 (sec). Leaf size: 3
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(5*y(t) + Derivative(y(t), t),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = 0 \]