Internal
problem
ID
[22372]
Book
:
Schaums
outline
series.
Differential
Equations
By
Richard
Bronson.
1973.
McGraw-Hill
Inc.
ISBN
0-07-008009-7
Section
:
Chapter
27.
Solutions
of
systems
of
linear
differential
equations
with
constant
coefficients
by
Laplace
transform.
Solved
problems.
Page
164
Problem
number
:
27.2
Date
solved
:
Thursday, October 02, 2025 at 08:38:02 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(w(t),t)+y(t) = sin(t), diff(y(t),t)-z(t) = exp(t), diff(z(t),t)+w(t)+y(t) = 1]; ic:=[y(0) = 1, z(0) = 1, w(0) = 0]; dsolve([ode,op(ic)]);
ode={D[w[t],t]+y[t]==Sin[t],D[y[t],t]-z[t]==Exp[t],D[z[t],t]+w[t]+y[t]==1}; ic={y[0]==1,z[0]==1,w[0]==0}; DSolve[{ode,ic},{y[t],z[t],w[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") y = Function("y") z = Function("z") w = Function("w") ode=[Eq(y(t) - sin(t) + Derivative(w(t), t),0),Eq(-z(t) - exp(t) + Derivative(y(t), t),0),Eq(w(t) + y(t) + Derivative(z(t), t) - 1,0)] ics = {y(0): 1, z(0): 1, w(0): 0} dsolve(ode,func=[y(t),z(t),w(t)],ics=ics)
Timed Out