Internal
problem
ID
[22375]
Book
:
Schaums
outline
series.
Differential
Equations
By
Richard
Bronson.
1973.
McGraw-Hill
Inc.
ISBN
0-07-008009-7
Section
:
Chapter
27.
Solutions
of
systems
of
linear
differential
equations
with
constant
coefficients
by
Laplace
transform.
Solved
problems.
Page
164
Problem
number
:
27.5
Date
solved
:
Sunday, October 12, 2025 at 05:52:21 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(diff(w(t),t),t)-y(t)+2*z(t) = 3*exp(-t), -2*diff(w(t),t)+2*diff(y(t),t)+z(t) = 0, 2*diff(w(t),t)-2*y(t)+diff(z(t),t)+2*diff(diff(z(t),t),t) = 0]; ic:=[y(0) = 2, z(0) = 2, D(z)(0) = -2, w(0) = 1, D(w)(0) = 1]; dsolve([ode,op(ic)]);
ode={D[w[t],{t,2}]-y[t]+2*z[t]==3*Exp[-t],-2*D[w[t],t]+2*D[y[t],t]+z[t]==0,2*D[w[t],t]-2*y[t]+D[z[t],t]+2*D[z[t],{t,2}]==0}; ic={y[0]==2,z[0]==2,Derivative[1][z][0] ==-2,w[0]==1,Derivative[1][w][0] ==1}; DSolve[{ode,ic},{y[t],z[t],w[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") y = Function("y") z = Function("z") w = Function("w") ode=[Eq(-y(t) + 2*z(t) + Derivative(w(t), (t, 2)) - 3*exp(-t),0),Eq(z(t) - 2*Derivative(w(t), t) + 2*Derivative(y(t), t),0),Eq(-2*y(t) + 2*Derivative(w(t), t) + Derivative(z(t), t) + 2*Derivative(z(t), (t, 2)),0)] ics = {y(0): 2, z(0): 2, Subs(Derivative(z(t), t), t, 0): -2, w(0): 1, Subs(Derivative(w(t), t), t, 0): 1} dsolve(ode,func=[y(t),z(t),w(t)],ics=ics)
Timed Out