Internal
problem
ID
[22381]
Book
:
Schaums
outline
series.
Differential
Equations
By
Richard
Bronson.
1973.
McGraw-Hill
Inc.
ISBN
0-07-008009-7
Section
:
Chapter
27.
Solutions
of
systems
of
linear
differential
equations
with
constant
coefficients
by
Laplace
transform.
Supplementary
problems
Problem
number
:
27.12
Date
solved
:
Sunday, October 12, 2025 at 05:52:22 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(diff(w(t),t),t)-2*z(t) = 0, diff(w(t),t)+diff(y(t),t)-z(t) = 2*t, diff(w(t),t)-2*y(t)+diff(diff(z(t),t),t) = 0]; ic:=[w(0) = 0, D(w)(0) = 0, z(0) = 1, D(z)(0) = 0, y(0) = 0]; dsolve([ode,op(ic)]);
ode={D[w[t],{t,2}]-2*z[t]==0,D[w[t],t]+D[y[t],t]-z[t]==2*t,D[w[t],t]-2*y[t]+D[z[t],{t,2}]==0}; ic={w[0]==2,Derivative[1][w][0] ==0,z[0]==1,Derivative[1][z][0] ==0,y[0]==0}; DSolve[{ode,ic},{w[t],z[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") w = Function("w") z = Function("z") y = Function("y") ode=[Eq(-2*z(t) + Derivative(w(t), (t, 2)),0),Eq(-2*t - z(t) + Derivative(w(t), t) + Derivative(y(t), t),0),Eq(-2*y(t) + Derivative(w(t), t) + Derivative(z(t), (t, 2)),0)] ics = {w(0): 2, Subs(Derivative(w(t), t), t, 0): 0, z(0): 1, Subs(Derivative(z(t), t), t, 0): 0, y(0): 0} dsolve(ode,func=[w(t),z(t),y(t)],ics=ics)