Internal
problem
ID
[22384]
Book
:
Schaums
outline
series.
Differential
Equations
By
Richard
Bronson.
1973.
McGraw-Hill
Inc.
ISBN
0-07-008009-7
Section
:
Chapter
31.
Solutions
of
linear
systems
with
constant
coefficients.
Solved
problems.
Page
194
Problem
number
:
31.2
Date
solved
:
Thursday, October 02, 2025 at 08:38:06 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = y(t), diff(y(t),t) = 8*x(t)-2*y(t)+exp(t)]; ic:=[x(0) = 1, y(0) = -4]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==y[t],D[y[t],t]==8*x[t]-2*y[t]+Exp[t]}; ic={x[0]==1,y[0]==-4}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-y(t) + Derivative(x(t), t),0),Eq(-8*x(t) + 2*y(t) - exp(t) + Derivative(y(t), t),0)] ics = {x(0): 1, y(0): -4} dsolve(ode,func=[x(t),y(t)],ics=ics)