85.1.8 problem 5 (a)

Internal problem ID [22413]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 1. Differential equations in general. A Exercises at page 12
Problem number : 5 (a)
Date solved : Thursday, October 02, 2025 at 08:38:38 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+y&=x \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 11
ode:=diff(y(x),x)+y(x) = x; 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = x -1+{\mathrm e}^{-x} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 13
ode=D[y[x],x]+y[x]==x; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x+e^{-x}-1 \end{align*}
Sympy. Time used: 0.068 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x) + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x - 1 + e^{- x} \]