85.3.1 problem 2

Internal problem ID [22437]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter 1. Differential equations in general. C Exercises at page 14
Problem number : 2
Date solved : Thursday, October 02, 2025 at 08:39:24 PM
CAS classification : [_separable]

\begin{align*} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+y x&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 29
ode:=x*y(x)*diff(y(x),x)^2-(x^2+y(x)^2)*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= c_1 x \\ y &= \sqrt {x^{2}+c_1} \\ y &= -\sqrt {x^{2}+c_1} \\ \end{align*}
Mathematica. Time used: 0.058 (sec). Leaf size: 55
ode=x*y[x]*D[y[x],{x,1}]^2-(x^2+y[x]^2)*D[y[x],x]+x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 x\\ y(x)&\to -\sqrt {x^2+2 c_1}\\ y(x)&\to \sqrt {x^2+2 c_1}\\ y(x)&\to -x\\ y(x)&\to x \end{align*}
Sympy. Time used: 0.324 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)*Derivative(y(x), x)**2 + x*y(x) - (x**2 + y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} + x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} + x^{2}}, \ y{\left (x \right )} = C_{1} x\right ] \]